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Abstract

We develop an efficient algorithm for simulating wave propagation over long distances with both weak and strong scat-
terers. In domains with weak heterogeneities the wave field is decomposed into forward propagating and back scattered
modes using two coupled parabolic equations. In the region near strong scatterers, the Helmholtz equation is used to cap-
ture the strong scattering events. The key idea in our method is to combine these two regimes using a combined domain
decomposition and wave decomposition method. A transparent interface condition is derived to couple these two regions
together. Numerical examples show that the simulated field is close to the field obtained using the full Helmholtz equation
in the whole domain.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Wave propagation in complex media is a challenging multi-scale problem both mathematically and numer-
ically. There are at least three typical length scales involved: the wave length, the propagation distance, and the
correlation length (the scale on which the medium varies). These three scales can differ by several orders of
magnitude. For example, in many applications, such as underwater acoustics, communications and remote
sensing, the wave propagates over a long distance which can be several orders of magnitude larger than the
wavelength. If the medium is inhomogeneous there is an additional characteristic scale corresponding to
the correlation length of the medium inhomogeneities. If the wave length is much smaller than the correlation
length of the medium, geometric optics provide in general a good approximation for the relatively smooth
phase envelope. If the correlation length is much smaller than the wave length, homogenization theory gives
an effective medium that can be used for propagation distances on the scale of the wavelength. Many wave
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propagation phenomena have a multi-scale nature in both space and time which complicates development of
efficient numerical algorithms. In this paper, we focus mainly on developing an efficient algorithm for the sim-
ulation of wave propagation in frequency domain. After Fourier transform in time the wave equation is
reduced to the Helmholtz equation in space (for a fixed wave number), which is a boundary value problem.
Due to the oscillatory wave nature of the solution, basic sampling conditions require resolution of the wave-
length for numerical discretization. If the computational domain is large compared to the wave length, which
corresponds to a large wave number, then the numerical discretization will result in a large system of equa-
tions. Moreover, unlike coercive elliptic equations, this discretized system is not positive definite. Computa-
tions are therefore very demanding both with respect to CPU time and memory. Direct solvers are too
costly due to memory constraints and iterative solvers may not converge or may converge slowly. However,
if the wave propagates in a weakly inhomogeneous medium, e.g., underwater acoustics or electromagnetic
waves in the atmosphere [12,19,22], the Helmholtz equation can be further simplified. In a situation, where
the propagation distance is much larger than the transverse dimension corresponding to a narrow angle geom-
etry and when the back scattering can be neglected the Helmholtz equation can be reduced to a parabolic
equation. The main advantage of the parabolic approximation is that it gives an initial value problem which
is much easier to analyze and much cheaper to compute. The parabolic equation (PE) approximation provides
an important tool for analysis and computation of wave propagation [1,2,8]. Generalized parabolic approx-
imations have been developed to deal with back scattering and wide angle geometries. For example, the two-
way parabolic approximation by Collins [7], see also the review paper [11] for more detailed survey of the par-
abolic approximations. Strong scattering and/or multiple scattering events from scatterers of arbitrary geom-
etry is still a challenge using parabolic approximations. In many applications, such as underwater acoustics
and electromagnetic waves in the atmosphere, there are strong localized scatterers or targets embedded in
the weakly heterogeneous background. In [13], Fishman developed a one-way propagation formulation based
on wave-field decomposition and the scattering operators. The wave field is decomposed as u = u(+) + u(�) and

the condition uz = iB(z)[u+ � u(�)] is required, where z is propagation direction and BðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@2

x þ k2ðx; zÞ
q

is
the square root operator which can be defined based on the eigenvalues and eigenfunctions of the transverse
operator @2

x þ k2. The construction of several explicit, uniform asymptotic approximations of the square root
Helmholtz operator are given in [14]. A re-formulation based on the Dirichlet-to-Neumann (DtN) map has
also been derived in [16–18]. An operator Riccati equation should be solved for decreasing propagating
distance with an initial condition that matches the exact radiation condition at 1. While the field should
be solved for increasing propagating distance. It is not practical if the total number of operator equation solu-
tions required is very large. This difficulty can be avoided by introducing a fundamental solution operator [18].

The key motivation in this paper is to couple parabolic approximation with full Helmholtz equation to deal
with more general situations. Here, we develop an approach based on both domain decomposition and wave-
field decomposition to deal with this situation with large propagation distances and short correlation length
for the medium fluctuations. We decompose the wave propagation domain into two types of regions as illus-
trated in Fig. 1. In the region of weak heterogeneities and long propagation distance, a coupled parabolic
approximation is used, while in the region where there are strong scatterers, the Helmholtz equation is used.

There are two crucial steps involved in coupling the solution from these two regions consistently. First, we
implement a boundary condition that is consistent with the wave-field decomposition and is transparent to
Fig. 1. P–H domain decomposition.
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waves propagating in different directions at the interface between these two regions. We comment that our
approach is different from the typical domain decomposition method since our computational domain is
decomposed according to different physical regimes and different types of approximation are used in each
sub-domain, moreover, since the boundary condition between the sub-domains is transparent to let informa-
tion pass through rather than being absorbing [5,6] to damp the error propagation. Second, we decompose the
wave field in the parabolic approximation region into two coupled parabolic equations to take into account
both forward propagating waves and the back scattered wave due to the presence of the strong scattering in
the Helmholtz region. The parabolic region has weak random medium fluctuations and is associated with long
range propagation. The following coupled parabolic system is used as a correction of the standard parabolic
equation approximation of the Helmholtz equation there:
2ikAz þ D?Aþ k2mA ¼ �k2mBe�2ikz;

� 2ikBz þ D?Bþ k2mB ¼ �k2mAe2ikz.
ð1Þ
This system was derived from an approximation of the Helmholtz equation after expressing the wave field in
terms of left and right (with respect to z) propagating modes. In the layered case this system is exact and reads
oA
oz
¼ ik

2
m Aþ Be�2ikz
� �

;

oB
oz
¼ ik

2
m Ae2ikz þ B
� �

;

and is analyzed in for instance [1]. The random field m corresponds to the random fluctuations in the refractive
index. This system captures very strong longitudinal scattering and interaction of modes that is associated
with a strongly fluctuating layered medium. In the case with a general three-dimensional variation in the index
of refraction, the two left-hand sides in (1) gives the system
2ikAz þ D?Aþ k2mA ¼ 0;

� 2ikBz þ D?Bþ k2mB ¼ 0;
which are the standard parabolic equations with a random potential that describes long range (uncoupled)
propagation in a fluctuating medium. They capture the effects of transversal scattering for these modes in
the associated narrow angle geometry. Finally, observe that in the deterministic case m = 0 the system (1)
becomes
2ikAz þ D?A ¼ 0;

� 2ikBz þ D?B ¼ 0;
which are the leading order transport equations of geometrical optics that are associated with a left or right
outgoing condition for high frequency waves and captures geometrical spreading effects. The system (1) can be
generalized to the situation with a slowly varying background and then include a phase term that comes from
the solution of the Eiconal equation, see (11) below.

The outline of our paper is as follows. In Section 2, we describe the general setup of the problem and the
main approach. In Section 3, we derive the wave-field decomposition for the parabolic approximation and the
transparent boundary condition between sub-domains. Numerical implementations and numerical examples
are presented in Section 4. A stability analysis for the wave decomposition is given in Appendix A.

2. The basic setup and wave decomposition

We consider propagation of acoustic waves over long distances in weakly heterogeneous background with
localized strong scatterers. Let u(x, t) and p(x, t) be the acoustic velocity and pressure satisfying the equation
of continuity of momentum and mass
qut þrp ¼ Fðx; tÞ; ð2Þ
K�1pt þr � u ¼ 0; ð3Þ
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where t is time, z is depth into the medium and defined so as to increase with depth, (x, z) = (x, y, z) are the
space coordinates, q is the density, K is bulk modulus, and the source is F(x, t). We model the medium by
q = q0 constant and
K�1ðx; zÞ ¼
K�1

0 ; z 2 ð�1; 0�;
K�1

p ðx; zÞð1þ mðx; zÞÞ; z 2 ð0;1Þ.

(

The function m modulating the compliance corresponds to the medium fluctuations. In the case of a station-
ary random medium it is a zero-mean, stationary stochastic process whose statistics take on particular forms
depending on the assumptions about the medium, whether it is locally layered, strongly or weakly heteroge-
neous media and so on [1]. In our discussion here m models the weak medium heterogeneities. At this stage, the
source term is omitted, but it will be taken into account through the initial conditions for the parabolic
equation.

Eliminating u from Eqs. (2) and (3), we get
Dp � q
K

ptt ¼ 0. ð4Þ
The time-harmonic version of (4) is the Helmholtz equation
Dp̂ þ ð1þ mÞx2c2p̂ ¼ 0; ð5Þ

where
cðx; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1ðx; zÞq

q
;

and p̂ is the Fourier transform of p with respect to time
p̂ ¼
Z

peixt dt.
Note that below we suppress the �hat� and that c represents the effective slowness and 1/c the speed in the
corresponding effective medium.

The Helmholtz equation is a boundary value problem. If the computational domain is large compared to
the wavelength, solving the discretized linear system using a direct method may be impossible due to memory
constraints. Moreover, since the linear system is not positive definite, usual iterative methods typically con-
verge slowly, if at all. We propose a domain decomposition approach by dividing the whole domain into
two types of sub-domains, as is illustrated in Fig. 1. The wave propagates over a long distance and in a weakly
heterogeneous medium in the first type of sub-domain, in the second type of sub-domains there are strong
scatterers present.

In the first type of sub-domains, the parabolic approximation can be used to simulate the wave prop-
agation. The basic approach is to neglect the back scattering, and only consider waves going mainly in
one direction, as the medium is only weakly heterogeneous and the domain fits into a narrow angle geom-
etry. The parabolic approximation becomes an initial value problem which significantly reduces the
complexity for both analysis and computation. This approximation is accurate in many scenarios such
as in range dependent ocean wave-guides or in the case of atmospheric wave propagation. However, in
our setup, although there is no strong back scattering for wave propagation in the weakly heterogeneous
domain, we need to capture the back scattered wave field from the domain that includes strong scatterers.
Here, we use a pair of coupled parabolic equations based on a wave-field decomposition formulation
developed in [15,21]. In fact, this coupled parabolic formulation also allows us to capture the effects of
strong heterogeneities with slow lateral variations in the parabolic domain as was demonstrated in [15].
In the second type of sub-domains, the full Helmholtz equation has to be solved in the near field of strong
scattering events. At the interface between these two type of domains appropriate boundary conditions
have to be imposed, which allow the correct information to propagate through the interface. The crucial
point in our formulation is that the wave-field decomposition in the parabolic domain is consistent with
our transparent boundary condition at the interface.
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In the following, we first briefly review the wave decomposition and the coupled parabolic equations in the
weakly heterogeneous domain. Then, we describe the transparent boundary conditions and the domain
decomposition algorithm.
2.1. Wave decomposition and coupled parabolic equations

In the standard parabolic approximation, assuming the wave is propagating along the positive z-axis, the
plane wave ansatz
pðx; zÞ ¼ Aðx; zÞ expðik0zÞ ð6Þ

can be used for the solution of Helmholtz equation
Dp þ x2c2ðx; zÞð1þ mÞp ¼ 0; ð7Þ

where k0 = x/c0 is a reference wave number and c0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
Kp=q

p
is the background velocity. The factor exp(ik0z)

in (6) represents a plane wave traveling in the positive z-direction and is supposed to take out the rapid oscil-
lations of p in the z-direction; the function A(x, z) captures the modulation of the plane wave phase and usu-
ally varies slowly with z.

Substitution of Eq. (6) into Eq. (7) gives
o2A
oz2
þ 2ik0

oA
oz
þ D?Aþ ½x2c2ð1þ mÞ � k2

0�A ¼ 0 ð8Þ
with D^ being the Laplacian in the lateral coordinates x. We next make the crucial paraxial approximation
(small angle approximation) corresponding to the situation with
o2A
oz2
� 2ik0

oA
oz
;

so that we have
2ik0

oA
oz
þ D?Aþ ½x2c2ð1þ mÞ � k2

0�A ¼ 0.
This approximation requires that we consider wave propagation in a narrow beam geometry, not close to the
source and that the medium is weakly inhomogeneous. The resulting equation is called the narrow-angle par-
abolic equation (PE). In the PE method, we take into account only waves traveling in the positive z-direction;
back scattering is neglected, see [12,19].

Now we consider a more general wave decomposition. We define
sðzÞ ¼
Z z

zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

Kp
� j jj2

r
ds ¼ ðz� zsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2� j jj2

q
and S� ¼ j � x� s
with j being the lateral slowness vector. Note that S+ is a plane wave phase corresponding to waves traveling

in the spatial direction ðj;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2� j jj2

q
Þ. In the case with a general three-dimensional background the phase

terms S± will be solutions of the Eiconal equation associated with the slowness c(x, z), see [1,20,21].
We decompose the wave into forward and backward propagating modes
p ¼ AeixSþ þ BeixS� . ð9Þ

Note that in this decomposition of the pressure, we introduced two components. Therefore, we need an

additional constraint to relate these two components. A physical condition that is often used in geophysics
to decompose a wave field into upgoing and downgoing waves is
0 ¼ Aze
ixSþ þ Bze

ixS� ; ð10Þ

which was discussed in [1] for layered medium.

We adopt this constraint for general case.
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Note that this plane wave decomposition is exact in the case of a homogenous medium and in the effective
medium case when the effective medium parameters are constant.

Plugging this decomposition into the Helmholtz equation, and using ðAze
ixSþ þ Bze

ixS�Þz ¼ 0, we get the
following mode coupling transport equations:
2rSþ � rAþ DSþA� ixc2mðAþ BeixðS��SþÞÞ ¼ i

x
D?A� R�eixðS��SþÞ; ð11Þ

2rS� � rBþ DS�B� ixc2mðBþ AeixðSþ�S�ÞÞ ¼ i

x
D?B� RþeixðSþ�S�Þ ð12Þ
with
Rþ ¼ 2r?Sþ � r?Aþ DSþA� i

x
D?A;

R� ¼ 2r?S� � r?Bþ DS�B� i

x
D?B;
where D^ is the transverse Laplacian. In the case that the fluctuations and the reflected field vanish,
(m ” 0, B ” 0), (11) becomes
2rSþ � rAþ DSþA ¼ i

x
D?A;
which in the high frequency limit gives
2rSþ � rA0 þ DSþA0 ¼ 0;
that is, the leading order transport equation of geometrical optics.
Here, we will consider the generalization of the parabolic case with waves propagating primarily in the

z-direction and set j = 0. Then the coupling transport equations become
2ikAz þ D?Aþ k2mA ¼ �ðk2mBþ D?BÞe�2ikz; ð13Þ
� 2ikBz þ D?Bþ k2mB ¼ �ðk2mAþ D?AÞe2ikz ð14Þ
with k = cx. A particular j corresponds to a specific plane wave mode. This variable is the Fourier variable
dual to the lateral space variable x introduced when the wave field in space and time is transformed into plane
wave modes via Fourier transformation with respect to the lateral spatial coordinates. We next continue our
discussion of the system (13) and (14) by introducing specific boundary conditions and a scheme for numerical
approximation of the solution.

A naive Jacobi iteration of these coupled parabolic equations corresponds to solving for A using the current
B in a source term and then solving for B with current A defining a source term and then iterate. This would
reduce the computation of the Helmholtz equation into the computation of a sequence of parabolic equations.
However, as we show in Appendix A, this iterative procedure is not stable. That is, without solving for A and
B simultaneously evanescent modes will grow exponentially, with the instability caused by the coupling trans-
verse Laplacian.

Since we are interested in the narrow angle wave propagation in the z-direction and long distance prop-
agation, the scattering in the propagation direction is more dominant and we drop the lateral scattering
terms D^B (respectively, D^A) when we solve for A(x, z) (respectively, B(x, z)) in (13) (respectively, (14)).
Consider the Eq. (13). In the homogeneous case with m ” 0 the terms involving the reflected field B will be
lower-order correction terms to the paraxial approximation. In the random case and with high frequency,
D^B is smaller than k2mB [1]. We will consider regimes where there is significant back-scattering due to the
scatterer m and therefore we drop the term D^B and retain the term involving m in the coupling part of
Eqs. (13) and (14)
2ikAz þ D?Aþ k2mA ¼ �k2mBe�2ikz; ð15Þ
� 2ikB þ D Bþ k2mB ¼ �k2mAe2ikz. ð16Þ
z ?
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3. P–H domain decomposition and the interface condition

The two reduced coupled parabolic equations can simulate wave propagation over long distances. Both the
forward propagating field and backward propagating field as well as their interactions are captured. The
domain will be decomposed into parabolic region XP and Helmholtz region XH as shown in Fig. 1 and we
design transparent boundary conditions consistent with our wave decomposition to couple the wave fields
in these two regions together. From the wave decomposition
u ¼ Aeikz þ Be�ikz;

0 ¼ Aze
ikz þ Bze

�ikz;
we find
ikuþ uz ¼ 2ikAeikz; ð17Þ

B ¼ iku� uz

2ik
eikz. ð18Þ
After solving the parabolic equation (15), we use (17) as the boundary condition when solving the Helm-
holtz equation in XH, and then we use (18) as the initial condition for solving the parabolic equation (16) in
XP, i.e., the incoming wave is passed from parabolic region to the Helmholtz region and the back scattered
wave is passed correspondingly.
3.1. Initial condition for the parabolic equation

We assume that the scatterer m is compactly supported and is located in a slab of thickness L, so that k is
constant for z < 0 and z > L. The source is located in the homogeneous medium, at zs < 0. Recall that with
B = 0 the amplitude equation for A is equivalent to the standard parabolic equation. We impose an initial
condition for the total field u at z = 0. We use a Gaussian form for the initial data [22]
uðx; 0Þ ¼
ffiffiffiffiffi
k0

p
e�
jxj2

2 .
Consequently, the initial data for A is
Aðx; 0Þ ¼ uðx; 0Þ � Bðx; 0Þ.
3.2. Artificial boundary condition

The governing wave equation
� Du� x2u ¼ f in Rd ; ð19Þ

lim
r!1

rðd�1Þ=2ðou
or
� ixuÞ ¼ 0; ð20Þ
describes linear propagation of time-harmonic acoustic waves. The Sommerfeld radiation condition (20) states
that the solution u is outgoing at infinity. The finite-element or finite-difference solution of this problem re-
quires the unbounded domain to be truncated at a finite distance, and it becomes necessary to approximate
the radiation condition at the truncation boundary. We truncate the domain by adding a perfectly matched
layer (PML) artificial boundary [3,4].

Denote
s1ðxÞ ¼
ix

r1ðxÞ � ix
;

then, with the PMLs, the coupling transport equations can be written
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2ikAz þ s2
1Axx þ k2mAþ s1s01Ax ¼ �ðk2mBþ s2

1Bxx þ s1s01BxÞe�2ikz; ð21Þ
� 2ikBz þ s2

1Bxx þ k2mBþ s1s01Bx ¼ �ðk2mAþ s2
1Axx þ s1s01AxÞe2ikz. ð22Þ
With PML included we have the following two coupled parabolic approximations (with one lateral
dimension):
2ikAz þ s2
1Axx þ k2mAþ s1s01Ax ¼ �k2mBe�2ikz; ð23Þ

� 2ikBz þ s2
1Bxx þ k2mBþ s1s01Bx ¼ �k2mAe2ikz. ð24Þ
At the boundary of the PML layer we use a zero Dirichlet boundary condition.

3.3. P–H–D iteration

In this section, we describe in detail the iterative procedure we use to approximate the wave field. With the
initial value B(0) = 0, for each m P 1 we solve for A(m) and u(m) according to
2ikAðmÞz þ s2
1AðmÞxx þ k2mAðmÞ þ s1s01AðmÞx ¼ �k2mBðm�1Þe�2ikz in XP;

AðmÞðx; 0Þ ¼
ffiffiffiffiffi
k0

p
e�
jxj2

2 � Bðm�1Þðx; 0Þ;
ð25Þ

s2

o

oz
ðs2

ouðmÞ

oz
Þ þ s1

o

ox
ðs1

ouðmÞ

ox
Þ þ k2ð1þ mÞuðmÞ ¼ 0 in XH;

ikuðmÞ þ uðmÞz ¼ 2ikAðmÞeikz on C;

uðmÞ ¼ 0 on oXH n C;

ð26Þ
where r1 = r1(x), r2 = r2(z) and r1(x) > 0 in the artificial domain giving damping of the plane wave modes in
the lateral direction, r2(z) giving damping of the wave in the propagation direction (at end of computational
domain), whereas ri = 0 in the physical domain giving the Helmholtz equation there.

Then, having solved for A(m) and u(m) we compute B(m) by
�2ikBðmÞz þ s2
1BðmÞxx þ k2mBðmÞ þ s1s01BðmÞx ¼ �k2mAðmÞe2ikz in XP;

BðmÞ ¼ ikuðmÞ�uðmÞz
2ik eikz on C.

ð27Þ
In the above iterations, the computational cost is comparable to the standard PE method. Though we need
to solve Helmholtz equation in the region with strong scatterers, we only need to solve the equations with
different boundary conditions. The computational cost is similar to solving it only once if we use LU decom-
position and save the decomposition.

As the convergence of the iteration, our numerical experiments demonstrate convergence and fast, but its
analysis is presently incomplete.
3.4. Dispersion relation

Note that for Helmholtz homogeneous medium plane wave modes: u ¼ eiðkxxþkzzÞ; k2
x þ k2

z ¼ k2 the interface
conditions correspond to
~A ¼ ikuþ uz

2ik
e�ikz ¼ k þ kz

2k
ei½kxxþðkz�kÞz�;

~B ¼ iku� uz

2ik
eikz ¼ k � kz

2k
ei½kxxþðkzþkÞz�.
The homogeneous medium parabolic approximation corresponds to the longitudinal wave number
~kz ¼ kð1� k2
x

2k2
Þ ¼ khðkxÞ ð28Þ



456 K. Huang et al. / Journal of Computational Physics 215 (2006) 448–464
and modes of the form
A ¼ ei½kxxþð~kz�kÞz�;

B ¼ ei½kxxþð~kzþkÞz�.
Hence, in the homogeneous case and with only modes traveling in the z-direction with kx = 0 the modes in the
two domains coincide, but for general kx they have a different representation.
4. Numerical examples

Four different examples are presented in this section. We compare the PE and P–H solution with Helmholtz
equation in the first three examples. In the last example, we show the PE and P–H solutions while we do not
give the Helmholtz solution due to computer limitations. The experiments clearly show that our approach is
much better in dealing with strong scattering than the PE method. Moreover, our approach produces compa-
rable results to the full Helmholtz equation while having comparable cost to the PE method. In these exam-
ples, we get the results in 2 or 3 iterations.

In the first three examples, the speed of propagation in the homogeneous medium is 330 m/s and to the
frequency being 25 Hz so that the corresponding wavelength is 13.2 m. In the discretization, we use 6p grid
points per wavelength in both directions. Our computational domain contains 400 grid points (horizontal)
and 1400 grid points (vertical), whereas on the left and the right sides, we use 15 grid points for the PML
medium, and 50 grid points for PML medium in the propagation direction. The P-domain corresponds to
the section from the source to 800 grid points while the rest comprises the H-domain.

4.1. Example 1

There is a single circular scatterer center at the 1000th grid point (53 wavelengthes) from the source with a
radius of 100 grid point (5 wavelengthes) in a homogeneous background medium with the speed of propaga-
tion in the scatterer being 467 m/s, faster than that of in the background medium.

In Fig. 2, the top left figure shows the speed of propagation in the medium. The background medium is
homogeneous and there is one strong scatterer in the Helmholtz domain. The top right figure plots the refer-
ence solution for the magnitude of the wave field corresponding to solving the Helmholtz equation in the full
domain. The two middle plots show the solution for the wave field obtained by using, respectively, the para-
bolic equation (PE) approximation and our P–H domain decomposition approach. Note that the PE solution
does not capture well longitudinal scattering and is smooth whereas the P–H domain decomposition approach
captures the high frequency components in the solution that is caused by such scattering events. In the two
bottom plots, we show the magnitude of the wave field evaluated at the center line corresponding to zero lat-
eral offset. The solid lines correspond to the Helmholtz solution and the two dotted line to, respectively, the PE
and the P–H domain decomposition solutions, respectively.

4.2. Example 2

To see the significance of the coupling term in the coupled parabolic equations, we add some fluctuations
generated by sin(x) sin(z) in the P-region. Note that there is no coupling terms in the parabolic equations if the
P-region is homogeneous (m = 0).

We compared the solution without the coupling terms. First compute A using the forward paraxial equa-
tion, then using the transmission equation (17) to compute p in the scatter region by solving the Helmholtz
equation, at last compute B using backward paraxial equation with transmission equation (18) as final
condition.

In Fig. 3, the top figure shows the fluctuation m in the medium. The background medium is homogeneous
and there are a strong scatterer in the Helmholtz region and also some weak fluctuation in the Parabolic
region. The middle two plots show the reference solution for the magnitude of wave field corresponding to



Fig. 2. The figure shows numerical approximations for the wave field using, respectively, the Helmholtz, the PE and the P–H domain
decomposition methods when the medium contains a strong imbedded circular scatterer shown in the top left plot: (a) Helmholtz and
parabolic; (b) Helmholtz and P–H–D.
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Fig. 3. The figure shows numerical approximations for the wave field using, respectively, the Helmholtz, the PE, the P–H–D methods, and
P–H–D method with no coupling terms for the two parabolic equations. The medium contains a strong imbedded circular scatterers
shown in the top plot and some weak fluctuation in the P-region.
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Fig. 4. The figure shows numerical approximations for the wave field using, respectively, the Helmholtz, the PE and the P–H domain
decomposition methods when the medium contains a strong imbedded circular scatterer shown in the top left plot. In addition, the
medium contains modulating random fluctuations in the speed of propagation: (a) Helmholtz and parabolic; (b) Helmholtz and P–H–D.
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solving Helmholtz equation and standard parabolic equation in the full domain. The bottom two plots show
the solution obtained by using, respectively, with or without coupling terms in the parabolic equations.

From the field computed without coupling terms, we can capture the reflection from the scatter region but
not the medium fluctuation in the P-region. While the solutions from Helmholtz equation and our approach
are matched well.
4.3. Example 3

In this example, we use the same circular scatterer as in Example one, but in this case we add also small
random fluctuations in the bulk modulus. The (truncated) Gaussian random fluctuations correspond to the
following model for the fluctuations m: the correlation length in x-direction is 5, in z-direction is 10, and we
use a Gaussian spectrum.

In Fig. 4, the top left figure shows the speed of propagation in the medium. The background medium is
homogeneous and there is one strong scatterer in the Helmholtz domain. The speed of propagation now also
contains a small modulating random component. The top right figure plots the reference solution for the mag-
nitude of the wave field corresponding to solving the Helmholtz equation in the full domain. The two middle
plots show the solution for the wave field obtained by using, respectively, the parabolic equation (PE) approx-
imation and our P–H domain decomposition approach. Note that the PE solution does not capture well lon-
gitudinal scattering and is smooth whereas the P–H domain decomposition approach captures both the high
frequency components in the solution that is caused by such scattering events and also the modification that is
due to the accumulated effect of the small incoherent scatterers. In the two bottom plots, we show the
magnitude of the wave field evaluated at the center line corresponding to zero lateral offset. The solid lines
correspond to the Helmholtz solution and the two dotted line to, respectively, the PE and the P–H domain
decomposition solutions.

Fig. 5 shows the spectrum for the signal trace corresponding to the center of the computational domain.
Here, we compute the spectrum as the Fourier transform of the modulus of the field. The solid line is the spec-
trum associated with the Helmholtz solver, while the dashed lines are the results of PE (a) and P–H–D (b),
respectively. We see that the spectrum of the Helmholtz and P–H domain decomposition solutions are very
close.
4.4. Example 4

In this example, the computational domain contains 10,000 grid points (531 wavelengthes) in the propaga-
tion direction and 600 grid points (32 wavelengthes) in horizontal direction. The frequency of the signal is
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Fig. 5. The spectrum computed by different algorithms.



Fig. 6. The figure shows numerical approximations for the wave field using, respectively, the PE and the P–H domain decomposition
methods when the medium contains a strong imbedded circular scatterer shown in the above.
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50 Hz, and the speed in the background medium is 1500 m/s. In the discretization, we use 6p points per wave-
length. There is a single circular scatterer at the 9650th grid points (512 wavelengthes) away from the source
and with 50 grid points being the radius. The background medium is homogeneous and the speed of propa-
gation in the scatterer is 2121 m/s, which is faster than that in the background medium. The domain from
source to 9400 grid points (499 wavelengthes) is our P-domain, the rest is the H-domain. The number of
unknowns in the discretized linear system for Helmholtz equation then becomes 6 million.

In Fig. 6, the top figure shows the speed of propagation in the medium. The background medium is homo-
geneous and there is one strong scatterer in the Helmholtz domain. The two middle plots show the solution for
the wave field obtained by using, respectively, the parabolic equation (PE) approximation and our P–H
domain decomposition approach. In the two bottom plots we show the magnitude of the wave field evaluated
at the center line corresponding to zero lateral offset. Again it shows that the PE approach can not capture the
back scattering due to the presence of a strong scatterer. Also the discontinuity of the speed and the geometry
of the scatterer boundary causes small oscillations due to dispersion errors in the PE approach.

5. Conclusion

Our main motivation was to develop a numerical scheme that can handle strong scatterers on the one hand
and long range propagation in a weakly fluctuating medium on the other. This has been accomplished by
developing an algorithm that couples two different regimes of wave propagation: the parabolic and the Helm-
holtz regimes. We use a domain decomposition approach that divides the region into a parabolic and a Helm-
holtz domain. In the parabolic domain, we decompose the wave field locally into forward and backward
propagating modes. The domain decomposition and wave mode decomposition approach allows us to deal
with long range wave propagation in the parabolic regime as well as strong scattering in the Helmholtz regime.
Numerical examples demonstrate that our method is able to capture the effects of the strong scatterers that
give strong coherent reflections as well as small scale fluctuations in the wave field that accumulate when
the wave propagates over large distances.
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Appendix A

Here, we show the potential instability when solving the full system (13) and (14) by iteration. We simplify
the system by considering only one transverse variable x and the homogeneous case with m = 0. We then have
2ikAz þ Axx þ Bxxe
�2ikz ¼ 0;

� 2ikBz þ Bxx þ Axxe
2ikz ¼ 0.
We analyze modes with lateral wave number kx so that the mode iteration becomes
LþAðmÞ ¼ �Bðm�1Þ
xx e�2ikz;

L�BðmÞ ¼ �AðmÞxx e2ikz;
ð29Þ
where we defined the operators
L� ¼ �2ik
o

oz
þ o2

ox2
.

We apply the initial and boundary conditions
Bð0Þðz; xÞ � 0;

AðmÞð0; xÞ ¼ a eikxx � Bm�1ð0; xÞ; BðmÞðL; xÞ ¼ 0;
0
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where L is the length of the considered slab and the end condition on the mode B(m) corresponds to a radiation
condition. The eigenfunction modes satisfying L�u� ¼ 0 are
u�ðz; xÞ ¼ eikxðx�kxz=ð2kÞÞ.
We now consider the case with large wave numbers satisfying k ¼ k2
x=ð2kÞ corresponding to h(kx) = 0 in (28).

Then
u�e�2ikz ¼ u�;
and the iteration (29) will in general exhibit rapid growth whereas modes with such lateral wave number are
evanescent and rapidly decaying in the context of the Helmholtz equation.

We next show the growth by assuming
Bðm�1Þðz; xÞ ¼ b0ðL� zÞjeikxðxþzkx=ð2kÞÞ; AðmÞð0; xÞ ¼ a0eikxx.
Then, writing
AðmÞðz; xÞ ¼ vðzÞeikxx;
we find when assuming k ¼ k2
x=ð2kÞ
dv
dz
þ ik2

x

2k
v ¼ � ik2

x

2k
ðL� zÞje�izk2

x=ð2kÞ.
The rapid phase variation in the source term of this equation is canceled exactly by the phase variation of the
propagator of the right-hand side operator, that is, is canceled exactly by the integrating factor used in the
solution of this equation. Thus, the integral of the source term then becomes large for large lateral wave num-
bers kx, we find explicitly
AðmÞðz; xÞ ¼ a0 � ikxb0

Ljþ1 � ðL� zÞjþ1ffiffiffi
2
p
ðjþ 1Þ

 !
eikxðx�kxz=ð2kÞÞ;

BðmÞðz; xÞ ¼ � ikxa0

L� zffiffiffi
2
p þ k2

xb0

Ljþ1ðL� zÞðjþ 2Þ � ðL� zÞjþ2

2ðjþ 1Þðjþ 2Þ

 !
eikxðxþkxz=ð2kÞÞ.
A similar, but slightly more complicated, analysis shows that there is a similar growth for general kx since res-
onant modes are generated after several iterations. The rapid growth is caused by the coupling transverse
Laplacian term, which is a lower-order term in the parabolic regime. In heterogeneous media evanescent
modes with specific lateral wave numbers can be generated by scattering. In numerical computations, roundoff
errors or artificial boundary conditions can also generate such spurious evanescent modes and cause instabil-
ity. Only if A and B are solved simultaneously with two appropriate point boundary conditions (which is the
case for Helmholtz equation) are the evanescent modes under control. Due to this the iterative procedure for
the coupled parabolic equations (13) and (14) for A and B is numerically unstable when the coupling trans-
verse Laplacian term is present.
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